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Efficient phase field simulation of a binary dendritic growth in a forced flow

C. W. Lan* and C. J. Shih
Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China
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Efficient quantitative phase field simulation using an adaptive finite volume method with an antisolutal
trapping scheme is presented for a binary dendritic growth in a forced flow. For the case of no convection, the
calculated results with different interface thickness are examined. It is found that with a proper antisolutal
trapping flux, a thick interface, but smaller than the diffusion boundary layer, could be used and the solution
could approach to the sharp-interface Gibbs-Thompson equation limit in almost all aspects quantitatively.
Based on the concentration driving force obtained from the sharp-interface limit of the Wheeler-Boettinger-
McFadden~WBM! model, the calculated results are in good agreement with the classic Oseen-Ivantsov solu-
tion for the concentration-driven growth in a forced flow. And the selection scaling factor also increases with
the external flow as the theoretical prediction.
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I. INTRODUCTION

The development of alloy microstructures is important
solidification processing for metallic systems, and its pred
tion has become an important research topic in physics
materials science. The phase field model has emerged
powerful tool to simulate such a structure evolution@1–12#.
However, limited by computation and inherent numerical n
ture, the phase field model has encountered many difficul
One of the most important limitations in the phase fie
simulation is the interface thicknessd. The choice ofd needs
to be small enough so that the sharp-interface limit can
achieved. However, such a value, which is usually in
order of the microscopic capillary lengthd0 , is several or-
ders smaller than the scale of microstructures. On the o
hand, the length scale of solutal and thermal boundary la
is also several orders larger than that of microstructures. A
result, such a sharp interface limit is too stringent in a re
istic simulation, even with today’s supercomputers.

Significant progress has been made by Karma and Ra
@6# for the thin-interface limit thatd can be chosen in the
same order of the scale of microstructure. In addition,
interface kinetic effects can play no role on the solutio
With such an implementation, efficient numerical simu
tions have been reported to the solution even at low su
coolings@8,11#. The effect of convection has been consider
@10,11# and the results agree very well with the Osee
Ivantsov solution for the temperature-driven growth of
pure material. However, with solutal effects for alloy solid
fication, the thin-interface limit cannot be adopted due
significant solutal trapping. Moreover, the degree of sup
cooling, which is decided by liquid and solid tip concentr
tion, is not a given parameter. Therefore, so far the ph
field simulations for alloys can only provide qualitative r
sults. Solutions with a small enoughd are scattered, and n
quantitative comparison has been made. The problem
comes particularly difficult when thermal@12# and convec-
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tive effects, which have much larger length scales, are ta
into account.

Very recently, Karma@13# proposed an antisolutal trap
ping scheme for the binary phase field simulation.
showed that with the antitrapping scheme the dendrite
speed as well as the solute profile in the solid for a t
interface can be achieved by using a thick interface thi
ness. Although there are no extensive illustrations and
aminations, the idea of using antisolutal trapping seems
shed a light on an efficient and quantitative phase field sim
lation of alloys.

In this paper we adopt Karma’s idea and implement
antitrapping scheme in the Wheeler-Boettinger-McFadd
~WBM! model @3# using an adaptive finite volume metho
@11,12#. We take the dendritic growth of a Cu/Ni alloy in a
isothermal environment@5# as examples. The results of di
ferent interface thickness are examined first for the dend
tip radius, tip speed, solute concentrations, and morpholo
The comparison with the sharp-interface solution and
classic Ivantsov solution is made. Then, the antitrapping
considered for the thickest interface and the calculated
sults are further examined showing a good approximation
the thin-interface solution. By applying the antitrapping
the growth in a forced flow using a thick interface, we o
tained results having good agreement with the Ose
Ivantsov solution. This seems to be quite promising fo
quantitative phase field modeling.

In Sec. II the model and the adaptive method used
described briefly. Section III is devoted to results and disc
sion, where detailed comparisons of the solutions from d
ferent interface thickness and antitrapping are made. Furt
more, the effect of convection is discussed and
quantitative comparison with the Oseen-Ivantsov solution
made before drawing the conclusion in Sec. IV.

II. MATHEMATICAL FORMULATION
AND NUMERICAL SOLUTION

The dendritic growth from a small circle seed in a lar
supercooled Ni/Cu melt at compositionc0 and temperature
T0 under a forced flow, as shown in Fig. 1, is simulated he

s:
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Due to the symmetry, a half domain is considered. For
case of no convection, one can further reduce it into a qua
domain, while setting the far field condition toc0 andT0 on
the right boundary. In this study, for comparison purposes
have used the isothermal approximation, which is the sa
as that used by Warren and Boettinger@5#, and the growth is
mainly driven by concentration. Because the crystallograp
directions have been aligned with the coordinate axes, a
domain is adequate for simulation. A sample mesh for
case without convection having the smallest interface th
ness (d5231029 m) is shown in Fig. 2~a!, where local
magnifications of the dendrite tip are illustrated. For t
cases with a forced flow in a half domain, a typical mesh
shown in Fig. 2~b!. Again, it is shown with three differen
viewing scales. For comparison purposes, the WBM mo
@3# is also adopted here, but the antitrapping scheme du
Karma @13# is included. Without antitrapping, the WBM
model was proposed by Wheeler, Boettinger, and McFad
@3# using the minimization of a Gibbs free energy functio
Based on an entropy function, Penrose and Fife@14# and
Warren and Boettinger@5# derived the WBM model for
nonisothermal growth. In order to present the govern
equations in dimensionless form, the variables are resca
The concentration~atomic fraction! c is rescaled byc0 to c* ,
wherec0 is the far field concentration. The length, in term
of the coordinatesx and y, is rescaled byl to x* and y* ,
respectively, and timet by l 2/DL to t* , wherel is a charac-
teristic length andl 2/DL is a characteristic time;DL is the
solute diffusivity in the liquid. The phase field variablef is
set to be 1 in liquid and 0 in solid, while 0.5 at the interfac

FIG. 1. Computational domain and physical boundary con
tions for a binary dendritic growth in a forced flow.
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The velocityn is rescaled byDL / l to n* . Then, the govern-
ing equations used in@5# can be represented in dimensionle
form

“•n* 50, ~1!

]n*

]t*
1n* •“n* 5Sc¹2n* 2¹P* 2Sc

l 2

d2 h~12w!2n* ,

~2!

]f

]t*
5M̃f* «̃* 2F“•~h2¹f!2

]

]x S hhb

]f

]y D
1

]

]y S hhb

]f

]x D G2M̃f* S̃* ~3!

]c*

]t*
1n* •“c* 5“•$D* @“c1c* ~12c0c* !

3~SB* 2SA* !“f#1 ja* %. ~4!

The first two equations are the equation of continuity and
equation of motion, respectively. In the equation of motio
Sc[n/DL is the Schmidt number, wheren is the melt vis-
cosity and assumed to be constant here. The source ter
related to the fluid/solid interaction for the two-phase regi
for the diffusive interface, which was proposal by Becke
mannet al. @15#. In the rest of equations, the variable with
tilde is the concentration-weighted average. Inside the dif

i- FIG. 2. Adaptive mesh refinement grid structures in~a!
diffusive growth (d5231029 m); ~b! convective growth
(d54.931028 m).
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EFFICIENT PHASE FIELD SIMULATION OF A . . . PHYSICAL REVIEW E69, 031601 ~2004!
sive interface, the properties are weighted by a funct
p(f) from a double-well functiong(f), which is defined by
g(f)5f2(12f)2. The weighting functionp(f) for the av-
eraged physical properties of the solid/liquid mixture is ch
sen such thatp8(f)530g(f) @5#. For example, the normal
ized diffusivity of the solution is given by

D* 5D/D~c0!5@Ds1p~f!~DL2DS!#/DL , ~5!

where the individual diffusivity has been assumed not
fected by the solute concentration, e.g.,D(c0)5DL ; bothDs

andDL are assumed constant here, i.e.,D[D̃. In addition,
SA* andSB* are the normalized entropy ofA ~solvent! andB
~solute!, respectively, being scaled byR/Vm , i.e., Si*
5SiVm /R ( i 5A or B!; Vm is the molar volume andR the
gas constant. The entropies ofA and B are defined as the
following:

SA~f,T!5WAg8~f!1p8~f!DHAS 1

T
2

1

Tm
A D , ~6!

SB~f,T!5WBg8~f!1p8~f!DHBS 1

T
2

1

Tm
B D , ~7!

where WA and WB are constants andTm
A and Tm

B are the
melting points ofA andB, respectively;DHA andDHB are
the heats of fusion per volume. Again, in Eq.~3!, S̃* is the
concentration-averaged value, i.e.,S̃* 5(12c)SA* 1cSB* .

The anisotropic functionh in Eq. ~3! is defined for the
fourfold symmetry as

h511g cos~4b!, ~8!

where g is the intensity of the anisotropy andb
5tan21@(]f/]y)/(]f/]x)# determining the growth orientatio
of the dendrite. In this study we have purposely chosen~100!
is in thex direction and~010! is in they direction, so that the
fourfold symmetry allows us to take a half domain for sim
lation, which saves computational effort significantly. F
nally, the dimensionless mobility functionM̃f* , being scaled
by DLVm /(Rl2), is taken from the average ofMi

5Tm
i 2b i /(6&DHid i), i 5A or B, where b i is the kinetic

coefficient andd i the interface thickness, which are assum
to be the same forA andB here. Similarly,«̃* 2 is a dimen-
sionless parameter being rescaled byl 2. For each compo-
nent, « i

256&s id i /Tm
i , wheres i is the interfacial energy

All the parameters chosen are the same as those in@5#, which
are similar to the ones used in the WBM model@3#.

The only difference comparing with the WBM mod
@3,5# is in the last term of the concentration equation, wh
is the antitrapping current introduced by Karma@13#. By
following Karma’s paper@13#, j a* can be defined as

j a* 5a
d

l
~12k!F 2c*

11k2~12k!h~f!G ]f

]t*
¹f

u¹fu
, ~9!

wherea is the antitrapping coefficient and needs to be
justed to fit the solid concentration of the sharp-interfa
03160
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solution. Also,h(f)5f is used such that the condition o
conservation of mass is guaranteed; other selections are
possible@13#. Although there are some differences betwe
Karma’s model and the WBM model, the choice ofh(f)
here seems to work quite well in our simulation.

The boundary conditions are straightforward for t
above equations. The symmetry condition is used at the c
terline. On the right side, the velocity is by the stress-fr
condition and the concentration constant atc0 ; the zero-flux
condition can also be used for concentration, but the resu
the same due to the large domain used. The inlet velocit
given to beU and the concentrationc0 . The outflow bound-
ary condition is further set by the overall mass balance. T
pressure at boundary is then obtained by linear extrapola
from the interior points.

We start the simulation from a pure nickel seed with
initial radius 2l . During growth, the mesh is adapted alon
the interface and high concentration-gradient regions; 0
,f,0.95 and 0.1,u¹cu are chosen for mesh refinemen
For the time integration, all variables are treated by the fi
order fully implicit Euler method, while a second-order fini
volume scheme is applied to the space domain. For the c
with fluid flow, SIMPLE scheme based on pressure corre
tion used @16#. The finite volume method is simple an
straightforward. For a domain, one can generate a numbe
square finite volumes with faces in conjunction to its neig
bor cells. Then, the integration of the conservation equati
over each finite volume, with Gauss theorem, flux balan
equations can be obtained for each cell.

In order to have a large domain for calculation, wh
keeping the cells near the interface to be small enough, a
tive mesh refinement~AMR! is necessary. Provatas, Golde
field, and Dantzig@8# proposed an efficient adaptive finit
element method for simulation, and the ratio of the larges
smallest cell size was up 217. Their computing cost scale
with domain size (L2). Adaptive meshes were also consi
ered by Braun@17# and Amberg@9,18#. Recently, Jeonget al.
further developed a three-dimensional~3D! AMR @19# for a
dendrtic growth of a pure material at high supercooling. W
have also developed an efficient AMR scheme based on
finite volume method for dendritic growth@11,16#. The de-
tails of the adaptive finite volume method can be found el
where@16#. The scheme has also been applied to a non
thermal diffusive growth ~without convection and
antitrapping! as well@12#. In our AMR scheme, or simplicity,
we have adopted a simple way to do refinement using qu
rilateral cells. Sample meshes are shown in Fig. 2. In sh
for the refinement, the parent cell is subdivided into four k
cells, while for coarsening, the kid cells are deleted. Co
structing the data structure is straightforward by using po
ers and derived data types ofFORTRAN 90. Detailed descrip-
tion of the adaptive data structure and a sample programm
can be found elsewhere@16#.

III. RESULTS AND DISCUSSION

For comparison purposes, the Ni/Cu system used by W
ren and Boettinger@5# is considered here. The physical pro
erties and the system related parameters, unless other
1-3
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stated, are the same as those in@5#; Tref51594.5 K, T0
51574 K, c050.4083, g50.04, and time stepDt* 50.2,
etc., as well as those parameters used in the WBM mo
bA50.3331022 m/(K s), bB50.3931022 m/(K s), LA
523503106 J/m2, LB517283106 J/m2, sA50.37 J/m2,
and sB50.29 J/m2. Different interface thickness (d52
31029;4.931028 m) are chosen for comparison for diffu
sive growth, and the adaptive mesh for the smallest interf
thickness (d5231029 m) is shown in Fig. 2~a!. The char-
acteristic lengthl 54.60631028 m and the smallest cell size
Dxmin51.49731029 m are chosen here; the smallest c
size used here is also much smaller than that used be
@5,9#. For d5231029 m, the domainW5100l is the small-
est one and the simulation stops att* 5100, which corre-
sponds to 0.212 ms in real time. In all cases, the tip sp
reaches to a steady state whent* ;30. For other cases,W
5750l has been used. Due to the use of the small interf
thickness, the computation time increases with the decr
ing d. For the smallestd, the calculation takes about a wee
which will be discussed shortly. The calculated morpholog
using different interface thickness are shown in Fig. 3.
shown, the calculated morphologies are very different, a

FIG. 3. Growth morphologies and solute fields at different
terface thickness for diffusive growth:~a! d54.931028 m; ~b! d
5231028 m; ~c! d5131028 m; ~d! d5531029 m; ~e! d
5231029 m. The calculations stop att* 5100.
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dendrite grows slower when the interface thicknessd is re-
duced. The concentration buildup also increases with the
creasingd. Moreover, the concentration profiles along the
for different d ’s are shown in Fig. 4. As shown, with th
decrease of the interface thickness, the sharp interface
can be approached, where the tip concentrations are obta
from the asymptotic limit of the WBM model@3,5#:

V

bAh~u!
1

ksA@h~u!1h9~u!#Tm
A

LA

5S ~Tm
A !2

T
2Tm

A D 1
Rg~Tm

A !2

VmLA ln
12CL

SI

12CS
SI ,

V

bBh~u!
1

ksB@h~u!1h9~u!#Tm
B

LB

5S ~Tm
B !2

T
2Tm

B D 1
Rg~Tm

B !2

VmLB ln
CL

SI

CS
SI , ~10!

whereV is the dendrite tip speed,bA andbB are the kinetic
coefficients of the solvent and the solute,LA andLB are the

TABLE I. Calculated interface concentrations and segregat
coefficients for various interface thickness; the antitrapping res
are based ond54.931028 m.

d ~m! CL
SI CS

SI CL CS CL /CL
SI CS /CL

SI k

4.931028 1.108 0.945 1.035 0.976 0.934 0.881 0.9
2.031028 1.105 0.942 1.049 0.969 0.949 0.877 0.9
1.031028 1.104 0.941 1.065 0.963 0.965 0.872 0.9
5.031029 1.104 0.940 1.080 0.958 0.978 0.868 0.8
2.031029 1.105 0.941 1.093 0.953 0.989 0.862 0.8

Antitrapping 1.110 0.946 1.058 0.940 0.953 0.847 0.8

-

FIG. 4. Calculated solute distributions for different interfa
thickness along the centerline of the dendrite tip. The sharpe in
face concentrations are obtained by Eq.~10!.
1-4
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EFFICIENT PHASE FIELD SIMULATION OF A . . . PHYSICAL REVIEW E69, 031601 ~2004!
latent heat,sA andsB are the interfacial energy, andk is the
tip curvature. In Fig. 4 the shape-interface concentration p
file in the melt is obtained by an exponential function. In E
~10!, if the kinetic coefficients are infinity, the equation
precisely the Gibbs-Thomson equation. However, in E
~10!, if we want to calculate the concentrations for the sh
interface limit in addition to the tip speedV, an accurate
estimation of the local tip radiusr ~or 1/k! is necessary. To
do so, we have adopted a fourth-order polynomial to fit
tip within 3l , the calculated tip radii and other values e
tracted from the simulation for variousd’s are listed in Table
I for comparison. The calculated segregation coefficients
differentd ’s also follow nicely with the model by Azizet al.
@20#, i.e., kn5(k1V/VD)/(11V/VD), where VD
50.207@DL ln(1/k)/d(12k)# @21#, as shown in Fig. 5.

With the tip speed, radius~local one!, and concentrations
the growth Peclet numberPC5rV/2DL and the normalized
growth driving forceDmod5(CL2CL

`)/(CL2CS) based on
the phase field model can be evaluated, whereCL andCS are
the tip concentrations at the liquid and solid sides, resp
tively, and CL

` is the concentration at infinity in the mel

FIG. 5. The calculated segregation coefficients, with solute tr
ping, as a function of the diffusion velocityVD @21# and the com-
parison with the results by Azizet al. @20#.
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With PC andDmod, the comparison with the classic Ivantso
solution@22# is possible. If we have aPC , the driving force
DPC

based on the Ivantsov solution can also be obtained

DPC
5ApPC exp~PC!erfc~APC!. ~11!

However, this equation is correct only forsA5sB50 and
bA andbB are infinity. Similarly, based on Eq.~10!, which is
the sharp-interface solution of the WBM model, one can c
culate another driving force, which can be denoted asDSI

5(CL
SI2CL

`)/(CL
SI2CS

SI); SI stands for the sharp interface
The comparison of these three driving forces is illustrated
Table II, as well as in Fig. 6. As shown, the maximum i
consistency betweenDPC

and DSI with the Ivantsov model

for the smallest interface thickness (d5231029 m) is only
about 8%, while the agreement betweenDmod andDSI is also
reasonable. Furthermore, the results in Table II are consis
with those obtained by Warren and Boettinger@5#, but they
were not be able to solve the whole dendrite by using
smallest interface thickness. We also put the overall tip
dius in Table II for comparison. In general, the overall de

- FIG. 6. Various normalized concentration driving forces as
function of the interface thickness.
rious

%

TABLE II. Calculated tip radii, Peclet numbers, and normalized concentration driving forces for va
interface thickness; the antitrapping results are based ond54.931028 m.

d ~m! Overall r( l ) r( l ) V(DL / l ) PC DPC
Dmod DSI Errora

4.931028 14.793 3.817 0.656 1.252 0.788 0.593 0.661 19.19
2.031028 9.091 2.839 0.669 0.950 0.751 0.613 0.643 16.78%
1.031028 6.954 2.464 0.621 0.765 0.720 0.637 0.637 13.05%
5.031029 5.097 2.393 0.579 0.693 0.705 0.656 0.635 11.02%
2.031029 4.690 2.349 0.545 0.640 0.694 0.664 0.640 8.32%

Antitrapping 4.921 2.447 0.500 0.612 0.687 0.492 0.671 2.38%

aThe relative error is obtained forDPC
by usingDSI as the reference, i.e., error5(DPC

2DSI)/DSI.
1-5
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TABLE III. Computational comparison for various interface thickness and the antitrapping caset*
5100.

d ~m! Domain size (l 2) Dxmax (l)/level Dxmin (l) Dt ( l 2/DL) Total grids CPU time~hr!

4.931028 7503750 10/5 0.625 0.2 8004 0.21
2.031028 7503750 10/6 0.3125 0.1 15 915 0.65
1.031028 7503750 10/7 0.15625 0.05 21 033 3.92
5.031029 7503750 10/8 0.078125 0.02 42 510 23.82
2.031029 1003100 10/9 0.0390625 0.005 113 485 175.75

Antitrapping 7503750 10/6 0.3125 0.2 14 325 0.43
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drite tip radius is about twice larger than the local one. B
cause the solutal boundary layer is only a fewl, and the tip
concentration is affected by the local tip radius, the use of
local tip is found to be more reasonable for the Ivants
solution as a whole. Furthermore, as shown in Fig. 6, w
the decreasing interface thickness, the normalized driv
forces seem to converge to a range near 0.67. Similarly,
is consistent with Fig. 3 that the dendrite tip shape and sp
converge with the decreasing interface thickness. Howe
the computation time for this case with the smallest interf
thickness (d5231029 m) is tremendously long already
and further reducing the interface thickness is unrealis
The domain size, maximum cell size/level of mesh, mi
mum cell size, time step size, the total cell number used
t* 5100, and the CPU time used are listed in Table III f
comparison. As shown, the number of total cells and
CPU time increase rapidly as the interface thickness is
duced. Also, the time step size needs to be reduced f
smallerd to ensure numerical stability.

In order to reduce the CPU time, while showing the po
sibility of obtaining a reasonable solution, we have chos
the largestd for the simulation with the antitrapping curren
The antitrapping coefficienta51/&, which is twice of Kar-
ma’s choice@13# in Eq. ~9! is picked by matching the solid
concentration obtained by Eq.~10!, i.e., the sharp-interface
limit. Surprisingly, the calculated morphology agrees ve
well with the one obtained by using the smallestd in Fig. 3,
as shown in Fig. 7, att* 5100. The calculated values i

FIG. 7. Calculated growth morphology and solute field att*
5100 for d54.931028 m with the antisolute trapping current.
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Tables I and II also show that the results obtained from
antitrapping scheme gives good consistency in the driv
forces with the thin-interface solution, exceptDmod. Besides,
the CPU time for calculating the antitrapping flux is qui
trivial. Interestingly enough, as we have seen the large
ference in the dendrite morphology for differentd’s in Fig. 3,
the difference at later time, sayt* 5500, is even larger, as
illustrated in Fig. 8 for the ones with and without the an
trapping current; the one with antitrapping is assumed
have a similar morphology as the one withd5231029 m.
The more morphological features of the antitrapping solut
are believed to be the cause of the larger solutal driv
force. Again, in both cases, no noise has been introduce

Nevertheless, if we examine the concentration profi
alone the dendrite center in Fig. 4, this antitrapping sche
fails to give a good concentration distribution in front of th
dendrite tip. The maximum tip concentration is pumped
by the antitrapping current, while the whole profile is push
forward to the melt side as well. As a result, itsDmod, as
shown in Fig. 6, is the worst among all cases. Indeed,
maximum tip concentration is too low for a reasonable p
diction of the driving forceDmod. However, other features
such as the tip speed and radius, seem to be good enoug
our needs. Fortunately, since the tip speed and radius ca
correctly estimated, getting a right tip concentration
straightforward by using Eq.~10!. If we do so, the solution
happens to be quite satisfactory. The agreement with
Ivantsov solution seems to be quite good as well, as sho
in Fig. 6. From this, it may be appropriate to conclude th
the antitrapping scheme amends the problem due to the t
interface, while the solution behavior away from the inte

FIG. 8. Comparison of the growth morphologies and solu
fields att* 5500: ~a! without the antisolute trapping current,~b!
with the antisolute trapping current.
1-6
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face is not much affected. If this argument can be accepte
more complicated and realistic problem, such as nonisot
mal and convective growth, can be solved easily by using
same antitrapping coefficient.

After building the confidence for the diffusive growth, th
antitrapping scheme is applied to study the effect of conv
tion on the growth, which is a much more difficult proble
from the computation point of view. The domain required f
convective growth should be much larger due to the la
momentum boundary layer thicknessdm , which can be esti-
mated by

dm'
n

V
5

6.2531027 m2/s

0.015 m/s
54.131025 m;1000l ,

~12!

wheren is the kinetic viscosity andV is the steady-state tip
speed. Based on this approximation, the domain size
800034000l 2 is chosen. A computation using such a lar
domain is formidable for a smalld or using a structured
mesh. With out adaptive scheme, the problem can be so
in 70 000 cells withDxmin50.3125l at t5500* , butd cannot
be too small (d54.931028 m). Figure 9 shows the mor
phologies and the concentration profiles calculated by
standard WBM model att* 5500 under various externa
flow velocities. A small window of 10003500l 2 is used for

FIG. 9. Calculated growth morphologies and solute fields att*
5500 for various external flow velocities without the antisolu
trapping current;d54.931028 m.
03160
, a
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e
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r
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FIG. 10. Calculated growth morphologies and solute fields
t* 5500 for various external flow velocities with the antisolute tra
ping current;d54.931028 m.

FIG. 11. Calculated upstream tip grow speeds in the presenc
different external flow velocities with the antisolutal trapping cu
rent; the lines from the bottom areU* 50, 1, 2, 4, 6, and 8, respec
tively.
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better illustration in Fig. 9. The flow field around the dendr
for U* 58 is also illustrated in the last plot. Figure 10 show
similar results, but with the antitrapping flux. Again, bo
results are quite different, and the solute trapping in Fig
leads to a much smaller concentration buildup in the gro
front. In both figures, it is clear that the tip growth spe
increases with the external velocity which is simply due
the thinner boundary layer in a stronger flow, and the
stream tip grow speed reaches steady state neart* 5100 be-
cause of the fully developed solutal boundary layer as sho
in Fig. 11. Besides, in Fig. 9 we can see that the side bran
ings have preferred growth orientations. Near the upstre
arm, the side branches grow upward, and the ones in
downstream side grow transversely. In addition, the prim
f
al
re
n

lu
cu
th
g
la
n

in
b
e

r-
re

en
re

be

to
he
tu
. A

a

g

03160
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h
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m
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sidearm normal to the flow direction is lopsided, and it b
comes more significant with the increasing flow veloci
Such a lopsided arm was also observed in experiments@23#.

The lopsided arm is also observed in Fig. 10 with t
antitrapping current. In addition to the slower growth ra
the major side arms in the groves disappear. Instead, m
small side branches are induced with a stronger forced fl
along the upstream dendrite primary arms. They are belie
to be the cause of the larger concentration gradients
faster forced flows that contribute more to the morphologi
instability. Furthermore, an extension of the Ivantsov so
tion to the convective growth is also possible. Similar to th
derived by Bouissou and Pelce@24#, the Oseen-Ivantsov so
lution for a concentration-driven growth in a forced flow ca
be written as
DPC
5PC exp~PC2Pf !E

1

` exp$2PCh1Pf@21*1
hg~z!/Azdz2h#%

Ah
dh ~13!

wherePf is the flow Peclet number defined byUr/2DL , and

g~z!5
Az erfc~ARez/2!1A2/~p Re!@exp~2Re/2!2exp~2Rez/2!#

erfc~ARe/2!
,

ity
he

ap-
so
en-

ra-
the
een-
re-

sary
tip

, as
is

st

ng
a

where Re5Ur/n is the Reynold’s number. The solution o
this implicit equation is simple and straightforward. The c
culated tip velocities, solute concentrations, tip radii, and
lated values are shown in Table IV for the cases with a
without the antitrapping current. Again, because the so
concentration at the sharp-interface limit cannot be ac
rately estimated by both calculations, we have to recover
values using Eq.~10!. As such, the shape-interface drivin
forceDSI is calculated. Finally, we can compare our calcu
tions with the Oseen-Ivantsov solution in Fig. 12. As show
a much better agreement with the classical theory is obta
for the calculations using the antitrapping flux than that
the original WBM model; there is about 40% error for th
original WBM model without the antitrapping current. Fu
thermore, it should be noticed that unlike the temperatu
driven growth, the driving force here is not unknowna pri-
ori, and it is a part of solution for the concentration-driv
growth. Without a good concentration calculation, the p
diction of the tip speed and morphology is not possible.

The Oseen-Ivantsov solution provides the relationship
tween PC and the driving forceD. However, the solution
alone cannot determine the tip speedV and tip radiusr
uniquely. According to the stability analysis, Langeret al. @1#
found an additional equation showing that the scaling fac
s* 52d0D/r2V is a property-dependent constant for t
dendritic growth of a pure substance. This criterion pos
lates that a dendrite tip grows at the margin of the stability
further analysis by Kessler and Levine@25# also pointed out
that the steady state solution is not possible except the
isotropy is introduced. Liptonet al. @26# also derived the
marginal solvability theory for binary alloy, and the scalin
-
-
d
te
-
e

-
,
ed
y

-

-

-

r

-

n-

factor s* is a function ofcL
` only. In addition, the ratio of

the scaling factors, i.e., (s* )0 /s* , without and with fluid
flow is a function of a dimensionless groupx; x
5a(Re)lU/(g3/4rV), where a(Re)5A2 Re/p exp(2Re/2)/
erfc(ARe/2). It has the form of (s* )0 /s* >11bx11/14 @24#,
whereb is a constant. Ifx is small enough~the forced flow is
weak!, this ratio should be independent of the flow veloc
as shown in Fig. 13, which is in good agreement with t
prediction of the linearized solvability theory@24#. Also, in
the cases of strong external flow, (s* )0 /s* increases slowly
both in the standard WBM model and our present antitr
ping calculations. The information of scaling factors al
shows good agreement with the previous theory for the d
dritic growth of a pure substance@10#.

Furthermore, unlike the temperature-driven growth@11#,
the solutal boundary layer is very thin here~about severall!
and the tip concentration is associated with the local tip
dius. The use of an overall dendrite shape for calculating
tip radius cannot restore the assumption used in the Os
Ivantsov solution, where a parabolic tip is assumed. The
fore, the use of the local tip radius happens to be neces
for getting a good agreement here. The overall dendrite
radius is about two times larger than the local one. Again
mentioned previously, the estimation of the local tip radius
also not trivial. The fourth order polynomial gives the be
and consistent fitting to the tip morphology.

IV. CONCLUSIONS

An efficient and quantitative phase field simulation usi
an antisolutal trapping scheme is presented for
1-8
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TABLE IV. Calculated values from the upstream tip in convective growth using~a! the standard WBM model and~b! with the antisolute
trapping current.

U(DL / l ) V(DL / l ) CL CS Dmod Overall r( l ) r( l )

~a!
0.5 0.651 1.036 0.977 0.610 15.77 3.846
1.0 0.655 1.033 0.977 0.589 15.53 3.820
2.0 0.662 1.035 0.977 0.603 15.63 3.870
4.0 0.677 1.031 0.977 0.574 15.87 3.990
8.0 0.705 1.031 0.977 0.574 17.24 4.181
16.0 0.750 1.026 0.977 0.531 21.28 4.794

U(DL / l ) CL
SI CS

SI PC Pf DSI PC
I

0.5 1.112 0.948 1.252 0.962 0.683 0.609
1.0 1.112 0.948 1.251 1.910 0.683 0.634
2.0 1.111 0.948 1.281 3.870 0.681 0.685
4.0 1.111 0.947 1.351 7.980 0.677 0.786
8.0 1.110 0.946 1.474 16.724 0.671 0.968
16.0 1.109 0.945 1.798 38.352 0.665 1.318

~b!
U(DL / l ) V(DL / l ) CL CS Dmod Overall r( l ) r( l )

0.5 0.503 1.062 0.941 0.512 5.94 2.446
1.0 0.505 1.059 0.941 0.500 5.96 2.426
2.0 0.523 1.064 0.941 0.520 5.99 2.456
4.0 0.559 1.061 0.940 0.504 6.05 2.476
8.0 0.617 1.054 0.939 0.470 5.88 2.434

U(DL / l ) CL
SI CS

SI PC Pf DSI PC
I

0.5 1.112 0.948 0.615 0.612 0.683 0.607
1.0 1.112 0.948 0.613 1.213 0.683 0.620
2.0 1.112 0.948 0.642 2.456 0.683 0.651
4.0 1.112 0.948 0.692 4.952 0.683 0.724
8.0 1.109 0.944 0.751 9.736 0.661 0.775
r a
lu
FIG. 12. Comparison of the calculated growth Peclet numbe
a function of the flow Peclet number with the Oseen-Ivantsov so
tion.
03160
s
-

FIG. 13. Comparison of the calculated scaling factor (s* )0 /s*
as a linear dependence of the dimensionless groupx11/14 with the
linear solvability theory.
1-9



a
k-
ha
o
in
u-
rro
fo

hu
in
n
a
lu
o
in

tra
it

ore
M
can
wth

nal
tios

of
ts by
an-

un-

C. W. LAN AND C. J. SHIH PHYSICAL REVIEW E69, 031601 ~2004!
concentration-driven growth of a binary Ni/Cu dendrite in
forced flow. For diffusive growth, several interface thic
nesses have been examined and compared with the s
interface limit and the classic Ivantsov solution, and go
agreement is obtained. It is clear that due to solutal trapp
the driving force for the growth is difficult to compute acc
rately, so are the dendrite tip radius and speed. Such e
decrease with the decreasing interface thickness, but un
tunately the computational cost also increases rapidly. T
for a realistic and quantitative simulation in a large doma
it is extremely difficult to use a thin interface. By using a
antitrapping flux, the limitation on the interface thickness c
be much relaxed. The calculated growth speed and so
concentration in the solid side, as well as the dendrite m
phology, are in good agreement with those obtained by us
a much thinner interface. However, the tip solute concen
tion in the melt side remains to be small as compared w
, J

ys

et

03160
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rs
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n
te
r-
g
-

h

the thin-interface solution. Nevertheless, if one can rest
the concentration from the sharp-interface limit of the WB
model, a good and consistent agreement with the theory
be obtained. Such an agreement is also found for the gro
in a forced flow, which requires a much larger computatio
domain. Moreover, the dimensionless scaling factor ra
are linear proportional to the flow parameterx11/14, which is
in good agreement with previous analytical study. The use
the antitrapping scheme indeed reduces computation cos
several orders and opens a window for a realistic and qu
titative alloy phase field simulation.
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